DataSheetWiki


GS81302R18E fiches techniques PDF

GSI Technology - 144Mb SigmaDDR-II Burst of 4 SRAM

Numéro de référence GS81302R18E
Description 144Mb SigmaDDR-II Burst of 4 SRAM
Fabricant GSI Technology 
Logo GSI Technology 





1 Page

No Preview Available !





GS81302R18E fiche technique
GS81302R08/09/18/36E-375/350/333/300/250
165-Bump BGA
Commercial Temp
Industrial Temp
144Mb SigmaDDRTM-II
Burst of 4 SRAM
375 MHz–250 MHz
1.8 V VDD
1.8 V and 1.5 V I/O
Features
• Simultaneous Read and Write SigmaDDR™ Interface
• Common I/O bus
• JEDEC-standard pinout and package
• Double Data Rate interface
• Byte Write (x36 and x18) and Nybble Write (x8) function
• Burst of 4 Read and Write
• 1.8 V +100/–100 mV core power supply
• 1.5 V or 1.8 V HSTL Interface
• Pipelined read operation with self-timed Late Write
• Fully coherent read and write pipelines
• ZQ pin for programmable output drive strength
• IEEE 1149.1 JTAG-compliant Boundary Scan
• Pin-compatible with present 9Mb, 18Mb, 36Mb and 72Mb
devices
• 165-bump, 15 mm x 17 mm, 1 mm bump pitch BGA package
• RoHS-compliant 165-bump BGA package available
SigmaDDRFamily Overview
The GS81302R08/09/18/36E are built in compliance with the
SigmaDDR-II SRAM pinout standard for Common I/O
synchronous SRAMs. They are 150,994,944-bit (144Mb)
SRAMs. The GS81302R08/09/18/36E SigmaDDR-II SRAMs
are just one element in a family of low power, low voltage
HSTL I/O SRAMs designed to operate at the speeds needed to
implement economical high performance networking systems.
Clocking and Addressing Schemes
The GS81302R08/09/18/36E SigmaDDR-II SRAMs are
synchronous devices. They employ two input register clock
inputs, K and K. K and K are independent single-ended clock
inputs, not differential inputs to a single differential clock input
buffer. The device also allows the user to manipulate the
output register clock inputs quasi independently with the C and
C clock inputs. C and C are also independent single-ended
clock inputs, not differential inputs. If the C clocks are tied
high, the K clocks are routed internally to fire the output
registers instead.
Each internal read and write operation in a SigmaDDR-II B4
RAM is four times wider than the device I/O bus. An input
data bus de-multiplexer is used to accumulate incoming data
before it is simultaneously written to the memory array. An
output data multiplexer is used to capture the data produced
from a single memory array read and then route it to the
appropriate output drivers as needed.
When a new address is loaded into a x18 or x36 version of the
part, A0 and A1 are used to initialize the pointers that control
the data multiplexer / de-multiplexer so the RAM can perform
"critical word first" operations. From an external address point
of view, regardless of the starting point, the data transfers
always follow the same linear sequence {00, 01, 10, 11} or
{01, 10, 11, 00} or {10, 11, 00, 01} or {11, 00, 01, 10} (where
the digits shown represent A1, A0).
Unlike the x18 and x36 versions, the input and output data
multiplexers of the x8 and x9 versions are not preset by
address inputs and therefore do not allow "critical word first"
operations. The address fields of the x8 and x9 SigmaDDR-II
B4 RAMs are two address pins less than the advertised index
depth (e.g., the 16M x 8 has a 4M addressable index, and A0
and A1 are not accessible address pins).
Parameter Synopsis
tKHKH
tKHQV
-375
2.66 ns
0.45 ns
-350
2.86 ns
0.45 ns
-333
3.0 ns
0.45 ns
-300
3.3 ns
0.45 ns
-250
4.0 ns
0.45 ns
Rev: 1.03b 12/2011
1/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology

PagesPages 30
Télécharger [ GS81302R18E ]


Fiche technique recommandé

No Description détaillée Fabricant
GS81302R18E 144Mb SigmaDDR-II Burst of 4 SRAM GSI Technology
GSI Technology
GS81302R18GE 144Mb SigmaDDR-II Burst of 4 SRAM GSI Technology
GSI Technology

US18650VTC5A

Lithium-Ion Battery

Sony
Sony
TSPC106

PCI Bus Bridge Memory Controller

ATMEL
ATMEL
TP9380

NPN SILICON RF POWER TRANSISTOR

Advanced Semiconductor
Advanced Semiconductor


www.DataSheetWiki.com    |   2020   |   Contactez-nous  |   Recherche