DataSheet.es    


PDF ATtiny45 Data sheet ( Hoja de datos )

Número de pieza ATtiny45
Descripción Atmel 8-bit AVR Microcontroller
Fabricantes ATMEL Corporation 
Logotipo ATMEL Corporation Logotipo



Hay una vista previa y un enlace de descarga de ATtiny45 (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! ATtiny45 Hoja de datos, Descripción, Manual

Atmel 8-bit AVR Microcontroller with 2/4/8K
Bytes In-System Programmable Flash
ATtiny25/V / ATtiny45/V / ATtiny85/V
Features
High Performance, Low Power AVR® 8-Bit Microcontroller
Advanced RISC Architecture
– 120 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
Non-volatile Program and Data Memories
– 2/4/8K Bytes of In-System Programmable Program Memory Flash
• Endurance: 10,000 Write/Erase Cycles
– 128/256/512 Bytes In-System Programmable EEPROM
• Endurance: 100,000 Write/Erase Cycles
– 128/256/512 Bytes Internal SRAM
– Programming Lock for Self-Programming Flash Program and EEPROM Data Security
Peripheral Features
– 8-bit Timer/Counter with Prescaler and Two PWM Channels
– 8-bit High Speed Timer/Counter with Separate Prescaler
• 2 High Frequency PWM Outputs with Separate Output Compare Registers
• Programmable Dead Time Generator
– USI – Universal Serial Interface with Start Condition Detector
– 10-bit ADC
• 4 Single Ended Channels
• 2 Differential ADC Channel Pairs with Programmable Gain (1x, 20x)
• Temperature Measurement
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
Special Microcontroller Features
– debugWIRE On-chip Debug System
– In-System Programmable via SPI Port
– External and Internal Interrupt Sources
– Low Power Idle, ADC Noise Reduction, and Power-down Modes
– Enhanced Power-on Reset Circuit
– Programmable Brown-out Detection Circuit
– Internal Calibrated Oscillator
I/O and Packages
– Six Programmable I/O Lines
– 8-pin PDIP, 8-pin SOIC, 20-pad QFN/MLF, and 8-pin TSSOP (only ATtiny45/V)
Operating Voltage
– 1.8 - 5.5V for ATtiny25V/45V/85V
– 2.7 - 5.5V for ATtiny25/45/85
Speed Grade
– ATtiny25V/45V/85V: 0 – 4 MHz @ 1.8 - 5.5V, 0 - 10 MHz @ 2.7 - 5.5V
– ATtiny25/45/85: 0 – 10 MHz @ 2.7 - 5.5V, 0 - 20 MHz @ 4.5 - 5.5V
Industrial Temperature Range
Low Power Consumption
– Active Mode:
• 1 MHz, 1.8V: 300 µA
– Power-down Mode:
• 0.1 µA at 1.8V
Rev. 2586Q–AVR–08/2013
2586Q–AVR–08/2013

1 page




ATtiny45 pdf
The ATtiny25/45/85 provides the following features: 2/4/8K bytes of In-System Programmable Flash, 128/256/512
bytes EEPROM, 128/256/256 bytes SRAM, 6 general purpose I/O lines, 32 general purpose working registers, one
8-bit Timer/Counter with compare modes, one 8-bit high speed Timer/Counter, Universal Serial Interface, Internal
and External Interrupts, a 4-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, and
three software selectable power saving modes. Idle mode stops the CPU while allowing the SRAM, Timer/Counter,
ADC, Analog Comparator, and Interrupt system to continue functioning. Power-down mode saves the register con-
tents, disabling all chip functions until the next Interrupt or Hardware Reset. ADC Noise Reduction mode stops the
CPU and all I/O modules except ADC, to minimize switching noise during ADC conversions.
The device is manufactured using Atmel’s high density non-volatile memory technology. The On-chip ISP Flash
allows the Program memory to be re-programmed In-System through an SPI serial interface, by a conventional
non-volatile memory programmer or by an On-chip boot code running on the AVR core.
The ATtiny25/45/85 AVR is supported with a full suite of program and system development tools including: C Com-
pilers, Macro Assemblers, Program Debugger/Simulators and Evaluation kits.
ATtiny25/45/85 [DATASHEET]
2586Q–AVR–08/2013
5

5 Page





ATtiny45 arduino
Figure 4-3. The X-, Y-, and Z-registers
X-register
15
7
R27 (0x1B)
XH
Y-register
Z-register
15
7
R29 (0x1D)
15
7
R31 (0x1F)
YH
ZH
0
07
R26 (0x1A)
07
R28 (0x1C)
7
R30 (0x1E)
XL
YL
ZL
0
0
0
0
0
0
In the different addressing modes these address registers have functions as fixed displacement, automatic incre-
ment, and automatic decrement (see the instruction set reference for details).
4.6 Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses
after interrupts and subroutine calls. The Stack Pointer Register always points to the top of the Stack. Note that the
Stack is implemented as growing from higher memory locations to lower memory locations. This implies that a
Stack PUSH command decreases the Stack Pointer.
The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. This
Stack space in the data SRAM must be defined by the program before any subroutine calls are executed or inter-
rupts are enabled. The Stack Pointer must be set to point above 0x60. The Stack Pointer is decremented by one
when data is pushed onto the Stack with the PUSH instruction, and it is decremented by two when the return
address is pushed onto the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when
data is popped from the Stack with the POP instruction, and it is incremented by two when data is popped from the
Stack with return from subroutine RET or return from interrupt RETI.
The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is
implementation dependent. Note that the data space in some implementations of the AVR architecture is so small
that only SPL is needed. In this case, the SPH Register will not be present.
4.6.1
SPH and SPL — Stack Pointer Register
Bit
0x3E
0x3D
Read/Write
Read/Write
Initial Value
Initial Value
15
SP15
SP7
7
R/W
R/W
RAMEND
RAMEND
14
SP14
SP6
6
R/W
R/W
RAMEND
RAMEND
13
SP13
SP5
5
R/W
R/W
RAMEND
RAMEND
12
SP12
SP4
4
R/W
R/W
RAMEND
RAMEND
11
SP11
SP3
3
R/W
R/W
RAMEND
RAMEND
10
SP10
SP2
2
R/W
R/W
RAMEND
RAMEND
9
SP9
SP1
1
R/W
R/W
RAMEND
RAMEND
8
SP8
SP0
0
R/W
R/W
RAMEND
RAMEND
SPH
SPL
4.7 Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the
CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal clock division is used.
Figure 4-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture
and the fast access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with
the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit.
ATtiny25/45/85 [DATASHEET]
2586Q–AVR–08/2013
11

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet ATtiny45.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
ATtiny48-bit AVR MicrocontrollerATMEL Corporation
ATMEL Corporation
ATtiny408-bit tinyAVR MicrocontrollerATMEL Corporation
ATMEL Corporation
ATtiny43138-bit MicrocontrollerATMEL Corporation
ATMEL Corporation
ATtiny43UMicrocontrollerATMEL Corporation
ATMEL Corporation

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar