DataSheet.es    


PDF ZL30112 Data sheet ( Hoja de datos )

Número de pieza ZL30112
Descripción SLIC/CODEC DPLL
Fabricantes Zarlink Semiconductor 
Logotipo Zarlink Semiconductor Logotipo



Hay una vista previa y un enlace de descarga de ZL30112 (archivo pdf) en la parte inferior de esta página.


Total 18 Páginas

No Preview Available ! ZL30112 Hoja de datos, Descripción, Manual

ZL30112
SLIC/CODEC DPLL
Data Sheet
Features
• Synchronizes to 8 kHz, 2.048 MHz, 8.192 MHz or
www.datas1he9e.4t44u.cMomHz input
• Provides 2.048 MHz and 8.192 MHz output clocks
and an 8 kHz framing pulse
• Automatic entry and exit from freerun mode on
reference fail
• Provides DPLL lock and reference fail indication
• DPLL bandwidth of 29 Hz for all rates of input
references
• Less than 0.6 nsecpp intrinsic jitter on all output
clocks
• 20 MHz external master clock source: clock
oscillator or crystal
• Simple hardware control interface
November 2007
Ordering Information
ZL30112LDE1
32 Pin QFN* Tubes, Bake
& Drypack
*Pb Free Matte Tin
-40°C to +85°C
Applications
• Synchronizer for POTS SLIC/CODEC
• Rate convert NTR 8 kHz or GPON physical
interface clock to TDM clock
Description
The ZL30112 SLIC/CODEC DPLL contains a digital
phase-locked loop (DPLL), which provides timing and
synchronization for SLIC/CODEC devices.
The ZL30112 generates TDM clock and framing
signals that are phase locked to the input reference.
It helps ensure system reliability by monitoring its
reference for stability and by maintaining stable
output clocks during short periods when the
reference is unavailable.
REF
RST
OSCi
OSCo
Reference
Monitor
State Machine
Master
Clock
REF_FAIL
LOCK
DPLL
Mode
Control
C2o
C8o
F8ko
Figure 1 - Functional Block Diagram
1
Zarlink Semiconductor Inc.
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright 2007, Zarlink Semiconductor Inc. All Rights Reserved.

1 page




ZL30112 pdf
ZL30112
Data Sheet
3.0 Functional Description
The ZL30112 is a SLIC/CODEC DPLL providing timing (clock) and synchronization (frame) signals to network
interface cards. Figure 1 is a functional block diagram which is described in the following sections.
3.1 Reference Monitor
www.datasheet4u.com
The input reference is monitored by two reference monitor blocks. The block diagram of reference monitoring is
shown in Figure 3. The reference frequency is detected and the clock is continuously monitored for two
independent criteria that indicate abnormal behavior of the reference signal, for example; loss of clock or excessive
level of frequency error. To ensure proper operation of the reference monitor circuit, the minimum input pulse
width restriction of 15 nsec must be observed.
Reference Frequency Detector (RFD): This detector determines whether the frequency of the reference
clock is 8 kHz, 2.048 MHz, 8.192 MHz or 19.44 MHz and provides this information to the various monitor
circuits and the phase detector circuit of the DPLL.
Coarse Frequency Monitor (CFM): This circuit monitors the reference frequency over intervals of
approximately 30 µs to quickly detect large frequency changes.
Single Cycle Monitor (SCM): This detector checks the period of a single clock cycle to detect large phase
hits or the complete loss of the clock.
REF
Reference Frequency
Detector
Coarse Frequency
Monitor
Single Cycle
Monitor
OR
REF_FAIL
Mode select
state machine
DPLL in FreeRun Mode
Figure 3 - Reference Monitor Circuit
Exceeding the thresholds of any of the monitors forces the corresponding REF_FAIL pin to go high. The single
cycle and coarse frequency failure flags force the DPLL into FreeRun mode.
5
Zarlink Semiconductor Inc.

5 Page





ZL30112 arduino
ZL30112
Data Sheet
The output clock should be connected directly (not AC coupled) to the OSCi input of the ZL30112 and the OSCo
output should be left open as shown in Figure 6.
www.datasheet4u.com
ZL30112
OSCi
+3.3 V
+3.3 V
20 MHz OUT
GND
0.1 µF
OSCo
No Connection
Figure 6 - Clock Oscillator Circuit
6.2.2 Crystal Oscillator
Alternatively, a Crystal Oscillator may be used. A complete oscillator circuit made up of a crystal, resistor and
capacitors is shown in Figure 7.
The accuracy of a crystal oscillator depends on the crystal tolerance as well as the load capacitance tolerance.
Typically, for a 20 MHz crystal specified with a 32 pF load capacitance, each 1 pF change in load capacitance
contributes approximately 9 ppm to the frequency deviation. Consequently, capacitor tolerances and stray
capacitances have a major effect on the accuracy of the oscillator frequency.
The crystal should be a fundamental mode type - not an overtone. The fundamental mode crystal permits a simpler
oscillator circuit with no additional filter components and is less likely to generate spurious responses. The crystal
specification is as follows.
1 Frequency
20 MHz
2 Tolerance
As required
3 Oscillation Mode
Fundamental
4 Resonance Mode
Parallel
5 Load Capacitance
As required
6 Maximum Series Resistance 50
Table 2 - Typical Crystal Oscillator Specification
11
Zarlink Semiconductor Inc.

11 Page







PáginasTotal 18 Páginas
PDF Descargar[ Datasheet ZL30112.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
ZL30110Telecom Rate Conversion DPLLZarlink Semiconductor
Zarlink Semiconductor
ZL30111POTS Line Card PLLZarlink Semiconductor
Zarlink Semiconductor
ZL30112SLIC/CODEC DPLLZarlink Semiconductor
Zarlink Semiconductor
ZL30116SONET/SDH Low Jitter System SynchronizerZarlink Semiconductor
Zarlink Semiconductor

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar