DataSheetWiki


240VA fiches techniques PDF

LatticeSemiconductor - In-SystemProgrammable3.3VGenericDigitalCrosspointTM

Numéro de référence 240VA
Description In-SystemProgrammable3.3VGenericDigitalCrosspointTM
Fabricant LatticeSemiconductor 
Logo LatticeSemiconductor 





1 Page

No Preview Available !





240VA fiche technique
ispGDXTM240VA
In-System Programmable
3.3V Generic Digital CrosspointTM
Features
Functional Block Diagram
• IN-SYSTEM PROGRAMMABLE GENERIC DIGITAL
CROSSPOINT FAMILY
— Advanced Architecture Addresses Programmable
PCB Interconnect, Bus Interface Integration and
Jumper/Switch Replacement
— “Any Input to Any Output” Routing
— Fixed HIGH or LOW Output Option for Jumper/DIP
Switch Emulation
— Space-Saving PQFP and BGA Packaging
— Dedicated IEEE 1149.1-Compliant Boundary Scan
Test
• HIGH PERFORMANCE E2CMOS® TECHNOLOGY
— 3.3V Core Power Supply
— 4.5ns Input-to-Output/4.5ns Clock-to-Output Delay
— 200MHz Maximum Clock Frequency
— TTL/3.3V/2.5V Compatible Input Thresholds and
Output Levels (Individually Programmable)
— Low-Power: 16.5mA Quiescent Icc
— 24mA IOL Drive with Programmable Slew Rate
Control Option
— PCI Compatible Drive Capability
— Schmitt Trigger Inputs for Noise Immunity
— Electrically Erasable and Reprogrammable
— Non-Volatile E2CMOS Technology
• ispGDXVA™ OFFERS THE FOLLOWING ADVANTAGES
— 3.3V In-System Programmable Using Boundary Scan
Test Access Port (TAP)
— Change Interconnects in Seconds
• FLEXIBLE ARCHITECTURE
— Combinatorial/Latched/Registered Inputs or Outputs
— Individual I/O Tri-state Control with Polarity Control
— Dedicated Clock/Clock Enable Input Pins (four) or
Programmable Clocks/Clock Enables from I/O Pins (60)
— Single Level 4:1 Dynamic Path Selection (Tpd = 4.5ns)
— Programmable Wide-MUX Cascade Feature
Supports up to 16:1 MUX
— Programmable Pull-ups, Bus Hold Latch and Open
Drain on I/O Pins
— Outputs Tri-state During Power-up (“Live Insertion”
Friendly)
• DESIGN SUPPORT THROUGH LATTICE’S ispGDX
DEVELOPMENT SOFTWARE
— MS Windows or NT / PC-Based or Sun O/S
— Easy Text-Based Design Entry
— Automatic Signal Routing
— Program up to 100 ISP Devices Concurrently
— Simulator Netlist Generation for Easy Board-Level
Simulation
I/O Pins D
ISP
Control
I/O
Cells
Global Routing
Pool
(GRP)
I/O
Cells
Boundary
Scan
Control
I/O Pins B
Description
The ispGDXVA architecture provides a family of fast,
flexible programmable devices to address a variety of
system-level digital signal routing and interface require-
ments including:
• Multi-Port Multiprocessor Interfaces
• Wide Data and Address Bus Multiplexing
(e.g. 16:1 High-Speed Bus MUX)
• Programmable Control Signal Routing
(e.g. Interrupts, DMAREQs, etc.)
• Board-Level PCB Signal Routing for Prototyping or
Programmable Bus Interfaces
The devices feature fast operation, with input-to-output
signal delays (Tpd) of 4.5ns and clock-to-output delays of
4.5ns.
The architecture of the devices consists of a series of
programmable I/O cells interconnected by a Global Rout-
ing Pool (GRP). All I/O pin inputs enter the GRP directly
or are registered or latched so they can be routed to the
required I/O outputs. I/O pin inputs are defined as four
sets (A,B,C,D) which have access to the four MUX inputs
Copyright © 2000 Lattice Semiconductor Corporation. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein
are subject to change without notice.
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A.
Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com
September 2000
gdx240va_02
1

PagesPages 25
Télécharger [ 240VA ]


Fiche technique recommandé

No Description détaillée Fabricant
240VA In-SystemProgrammable3.3VGenericDigitalCrosspointTM LatticeSemiconductor
LatticeSemiconductor

US18650VTC5A

Lithium-Ion Battery

Sony
Sony
TSPC106

PCI Bus Bridge Memory Controller

ATMEL
ATMEL
TP9380

NPN SILICON RF POWER TRANSISTOR

Advanced Semiconductor
Advanced Semiconductor


www.DataSheetWiki.com    |   2020   |   Contactez-nous  |   Recherche